Lambda 821 Optical Beam Combining System

The Lambda 821 beam combiner is a new, patented, concept for combining separate light sources with different spectra into a single common output beam

Product Enquiry

If you would like to send us an enquiry about this product, please click the button below, fill in the form and submit.

Product Enquiry

Product Enquiry

Please fill out the form if you would like to enquire about this product.

"*" indicates required fields

Name
Please indicate the name of your University or company
We would really like to stay in touch, so that we can inform you about new products, training events and other news that we think might be of interest to you. To comply with data protection regulations, we can only contact you in this way if we have your explicit permission to do so. By ticking the opt in box you are giving consent for Linton Instrumentation to process your data and you understand that you have the right to withdraw it at any time.*

Lambda 821
Optical Beam Combining System

The Lambda 821 beam combiner is a new, patented, concept for combining separate light sources with different spectra into a single common output beam. Each separate light source is collimated before entering the optical path through a bandpass filter. The filters for each light source also function as mirrors that reflect the collimated beams from the previous light sources. In the diagram below the optical paths are outlined for each position including the reflections that occur:

Lambda 821 Optical Path
Optical path for each light source position from 0 through 7

Traditionally, combining more than two light sources required the use of a dichroic ladder. Dichroic mirrors, which switch from transmission to reflection at one point in the spectrum, allow the combining of separate light sources, provided that those sources do not have overlapping wavelengths. The downside of this approach is that light sources cannot be easily changed.

Dichroic ladders also demand careful attention to the order in which the light sources are introduced into the optical path to avoid having the light blocked by the next dichroic in line. Typically, additional bandpass filters must be added in front of each light source before the dichroic, to select the desired range of wavelengths for each source. Each filter and dichroic used in the ladder decreases the total light output of the system.

Features

  • Capable of combining any light source
  • Any suitable filter can be placed in any of 4 positions without concern for the order
  • Wavelength selection and beam reflection using Semrock® STR Filters

Common Applications

  • Fluorescent microscopy
  • Calcium imaging
  • FURA
  • Optogenetics
  • High speed wavelength selection

The Lambda 821 was designed to keep the size of the beam combiner small and the optical path short and efficient. Thin-film bandpass filters, such as Semrock’s STR, reflect greater than 90% of out-of-band light. If the band pass of each light source does not overlap, it is possible to use the filters for both attenuation and reflection of the light from the other sources. By arranging the filters and sources into a pentagon, we were able to combine four light sources in a compact design with lower losses than previously achievable. As an added benefit, the last position in the optical train does not require any filter, since no other input reflects from that position. This input can be used with any sort of light source as long as you are aware of the possible losses if there are filters in use that overlap this light source. The fifth side of the pentagon becomes the output for the combined sources. The filters are easily exchangeable and are installed on small sliders inside the core of the pentagon. Filters and associated light sources can be arranged in any order around the pentagon.

Notes:

  • The light from position #0 goes directly to the device output without being reflected. This position might be preferred for the source with the greatest desired output.
  • The filter for the fourth light source is not used as a reflective surface and could be omitted if a broad-band source were desired.
  • In configurations with fewer than 4 light sources, sources should be filled from lowest to highest number of reflections to ensure the greatest light output.
  • The optical path for each input is tilted by 18 degrees relative to the filter for that port. This will cause a small shift in the band pass toward shorter wavelengths. While it would be ideal to have a coating optimized for this application, we have found that stock -STR filters can be used if you correct for the shift in the band pass when selecting the filters. This lends itself to combining narrow-band sources such as LEDs and lasers with a broad-band sources such as an arc lamps or white light LEDs. In the case of LEDs, wavelengths can be shuttered at the speed of the individual source. Sutter Instrument HPX and TLED products can switch in 10-25 microseconds respectively, making the Lambda 421 one of, if not the fastest wavelength switcher on the market. The Lambda optical beam combiner is designed for flexibility and expandability. Should your illumination need change over time a simple configuration change and possibly additional filters can produce an entirely different output.

 

Lambda 421 Spectra Options
Lambda 821 – LED Spectra Options

Ordering Information

Includes Lambda 421 with liquid light guide, cables, and power cord. The instrument accepts up to 4 LED modules (listed below) and can easily be reconfigured. The LED modules consist of the LED and the appropriate Semrock®-STR excitation filter for the output of the LED.

Collimating adapters for Nikon, Zeiss, Leica and Olympus microscopes are available. Please see the Microscope Adapters Page or contact Sutter Instrument for pricing and further information.

Catalog Number Description
LB-821 Lambda 821 Optical Beam Combiner and controller

 

LED modules for Lambda 821

Catalog Number Description
OBC-340 LED, 340 nm for Optical Beam Combiner
OBC-365 LED, 365 nm for Optical Beam Combiner
OBC-385 LED, 385 nm for Optical Beam Combiner
OBC-410 LED, 410 nm for Optical Beam Combiner
OBC-440 LED, 440 nm for Optical Beam Combiner
OBC-460 LED, 460 nm for Optical Beam Combiner
OBC-480 LED, 480 nm for Optical Beam Combiner
OBC-506 LED, 506 nm for Optical Beam Combiner
OBC-530 LED, 530 nm for Optical Beam Combiner
OBC-561 LED, 561 nm for Optical Beam Combiner
OBC-590 LED, 590 nm for Optical Beam Combiner
OBC-617 LED, 617 nm for Optical Beam Combiner
OBC-630 LED, 630 nm for Optical Beam Combiner
OBC-660 LED, 660 nm for Optical Beam Combiner
OBC-740 LED, 740 nm for Optical Beam Combiner
OBC-810 LED, 810 nm for Optical Beam Combiner
OBC-850 LED, 850 nm for Optical Beam Combiner
OBC-940 LED, 940nm for Optical Beam Combiner
OBC-W5 LED, White Light for Optical Beam Combiner

 

Output Range
(330 nm – 960 nm) Depending on the LED’s selected for use

Shuttering
Turn ON/OFF time: <25 µs

Noise/Short term stability
0.01%

LED Life
>50,000 hours

Control Box Dimensions
7 in x 19 in x 10.5 in | 17.7 cm x 48.25 cm x 26.5 cm

Weight
23 lbs | 10.43 kg

Electrical
120/240 Volts
50/60 Hertz power line

You may also like…